
ar
X

iv
:1

90
3.

10
75

7v
1 

 [
as

tr
o-

ph
.G

A
] 

 2
6 

M
ar

 2
01

9

March 27, 2019 0:39 WSPC/INSTRUCTION FILE halo4

International Journal of Modern Physics D
c© World Scientific Publishing Company
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The study of Planck microwave temperature maps towards several nearby spiral edge-on
galaxies had revealed frequency independent temperature asymmetry of Doppler origin
in their halos. On an example of M31, as of relatively detailed studied galaxy, the contri-
bution of the dust component in that effect is studied using the models of dust emission
and the phenomenological profiles of the dark matter configurations. The results are
in accordance with those obtained from the microwave temperature asymmetry data,
thus indicating the possible contribution of dust among other radiation mechanisms in
revealing the dark halo parameters.
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1. Introduction

The importance of studies of galactic halos is essentially determined by their key

role in the deciphering of the nature of dark matter. The physical parameters of

the halos not only determine the dynamics of galaxies including of the disks in

spiral galaxies,1, 2 but also provide informative criteria to constrain the models of

evolution of the cosmological perturbations.3

Among the recent studies addressing the structure of galactic halos are those

based on the analysis of the microwave temperature asymmetry of nearby galaxies

using several frequency bands of the Planck data.4–8 Namely, first for M31, then

for several other Local Supercluster spiral edge-on galaxies it was shown that, the

temperature asymmetry both in the disk and halo extends up to 130kpc. While the

essentially frequency independent temperature asymmetry is indicating the Doppler

nature of the effect, the Doppler induced anomaly itself can be due to different

emission mechanisms of interstellar medium (ISM). One of the main components of

ISM is the interstellar thermal dust, which emits especially at high frequencies. The

possible contribution of the thermal dust in that effect is studied below using high

frequency data of Planck. At the same time, dark matter configuration models have
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been actively developed, among those are Navarro-Frenk-White (NFW),9 Moore,10

Burkert11 models, so we will deal with those models in our analysis. As for M31

dark halo profile, it was studied e.g. in.12–14

The present study concentrates on M31 galaxy, to probe the physical effects

which can contribute to the microwave temperature asymmetry. Various models

have been proposed for interstellar dust, which fix the properties of dust particles

i.e. the chemical composition, dust grain size, distribution, etc. For our analysis

we use the silicate-graphite-PAH model proposed in15 (hereafter DL07), as well

as Planck’s dust emission maps. According to Planck team,16–18 these models are

described by single modified blackbody spectrum (MBB), from which we obtain

radial variation of dust emission optical depth, using Planck’s dust emission map

at three frequencies.

The paper is organized as follows. Section 2 describes the dust models and MBB

spectrum. Planck maps are described in Section 3, which then are used in calcula-

tions. Section 4 is focused on the optical depth values derived using MBB spectrum.

In section 5 the dark matter distribution profiles are analyzed. CMB temperature

asymmetry values as well as the rotation velocities obtained via Doppler effect in-

duced asymmetry formula are given. The conclusions are summarized in section

6.

2. Interstellar thermal dust emission

2.1. The DL07 model

In this model, the dust is assumed to consist of a mixture of carbonaceous grains

and amorphous silicate grains. In interstellar medium dust is heated from starlight

and re-emits it in infrared or far-infrared wavelengths. DL07 model15 has several

parameters which completely define all the properties of dust grains. There are two

types of dust grains: small grains (a ≤ 300Å) and large grains (a ≈ 2200Å). Small

grains are warmer than big grains. According to19 major part of the emission comes

from large grains, which is dominating part of all interstellar dust. DL07 model

has several parameters, among those are are the dust mass surface density ΣMd
,

dust optical extinction Aν , starlight intensity Umin, the dust mass fraction in small

PAH (Polycyclic Aromatic Hydrocarbon particles) grains qPAH . Here the quantity

qPAH is defined as PAH’s fraction of the total dust mass. PAHs are emitted at

3.3µm, 6.2µm, 7.7µm, 8.6µm, and 11.3µm wavelengths and we are not interested

in their contribution, since we consider only three wavelengths (350µm, 550µm,

850µm). However, the exact modeling of PAHs is important for definition of total

dust mass.15

Important parameter is the dust Spectral Energy Distribution (SED) shape as

compared with the internal mechanism from which SED emerges, since we need to

calculate the radial variation of the dust emission optical depth.

Therefore, for our analysis we use only the dust mass surface density (or equiva-

lent flux density from maps) to determine the dust velocity dispersion. As suggested
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by19 there is relationship between dust mass and optical depth

Mdust =
τD2Ω

k
, (1)

where τ is the optical depth, k is the dust mass absorption coefficient, which depends

not only on given frequency, but also on chemical composition and structure of the

dust grains; for example, at 353 GHz (850µm) Kν = 0.43± 0.04cm2g−1,20 D is the

distance from the dust grains to observer, Ω is the solid angle. Optical depth (τ)

shows intensity reduction of light emitted by dust grains and propagating over line-

of-sight. The values of dust mass surface density, as well as of other parameters for

DL07 model are publicly available in the Planck Legacy Archive and the parameters’

processing is described in details in.30 In Table 1 we present the values of dust mass

surface density for M31 obtained based on the Planck maps.

2.2. The modified blackbody spectrum

As mentioned in the several Planck papers16–18 the DL07 and GNILC-derived SEDs

are compatible with MBB spectrum, which is obtained empirically from Planck

observations of dust. For optically thin sources (like M31) the MBB function is as

follows

Sdust(ν) = 2h
ν3

c2
1

e
hν

kT
d − 1

τ(
ν

ν0
)β , (2)

where Sdust(ν) is the dust emission flux density, Td is the dust temperature and β

is the spectral index. Through spectral index we can identify the dust model. For

DL07 model spectral index value of 2 for any radii is assumed. The dust tempera-

ture changes in more complex way. The Planck data indicate that, there is an anti-

correlation between Td and β. Td decreases, while β increases at large galactocentric

distances. This anti-correlation has been examined in several studies.20–22The origin

of anti-correlation is non-physical and is caused by instrumental noise or uncertain-

ties at MBB spectrum fitting.23, 24 However, as reported in,25 the spectral index for

millimeter wavelengths is insensitive to temperature, while for FIR wavelengths the

degeneracy is significant due to data uncertainties. The values of the dust temper-

ature and spectral index are given in Table 1. On the other hand, the temperature

may change even for fixed value of spectral index. Therefore, we calculate the optical

depth for two different cases:

(1) Both Td and β are constant at 19.635 K. Keeping fixed β, we vary the temper-

ature. The data on temperature for different galactocentric distances are taken

from Planck GNILC temperature maps.

(2) Using GNILC maps for Td and β we calculate the radial variation of the optical

depth vs temperature and spectral index. We also cover optical depth, when

β = 2, Td 6= const. These maps are available in Planck Legacy Archive, their

processing is described in.27
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Table 1. Dust temperature, spectral index and mass surface density.

Distance
r (kpc)

Temperature
Td(K)

Spectral index
β

Mass
surface density
M⊙

kpc2
(104)

40 19.768 1.516 8.10
60 19.600 1.533 7.358
80 19.541 1.541 7.208
100 19.517 1.545 7.188

3. Planck maps

During the calculation of the optical depth we use several maps produced by Planck.

These maps are publicly available in Planck Legacy Archivea. All maps, which we

use during this study are given in Hierarchical Equal Area iso-Latitude Pixelization

(HEALPix) with galactic coordinate system.26 All maps have Nside=2048 resolu-

tion, so the maps have 12 × 2048 × 2048 = 50331648 pixels. For our analysis we

extracted 2D projected maps centered on M31 ( l = 121.170, b = −21.570), with

100 width region.

DL07 and GNILC maps: The Generalized Needlet Internal Linear Combination

(GNILC) method uses spatial information to separate dust emission and cosmic in-

frared background (CIB). The component-separation technique details are discussed

in.27 It is important to note, that GNILC maps are based on prior assumptions on

the other foreground emissions (CMB, CIB, free-free, etc). In contrast, DL07 model-

predicted fluxes are based on an individual dust model. Despite this, for galactic

halo the MBB well describes both DL07 and GNILC methods. GNILC maps also

have offsets at each frequencies(0.556 MJy/sr for 857 GHz, 0.335 MJy/sr for 545

GHz and 0.124 MJy/sr for 353 GHz), which we have taken into account. Besides

the three frequency maps we also use GNILC spectral index and temperature maps,

which have been obtained using MBB fitting procedure. For flux density Sdust(ν)

values we use both DL07 and GNILC maps in three bandwidths.

In our calculations we started from 35 kpc distance from M31 center and sub-

stituted each pixel with the average value of the equidistant pixels.

4. Dust emission optical depth

As mentioned above, we use MBB spectrum for obtaining the spatial variations

of optical depth in M31 halo. We begin with DL07 model, where dust spectral

index has fixed value of 2. Dust grain in thermal equilibrium with radiation field

has uniform temperature distribution with average 19.635K (so here we consider

this temperature value for M31 halo in the range of 30-100 kpc). Then we assume

varying temperature (from GNILC map). The result of our calculations are given

in the Table 2. The table shows, that the optical depth gradually decreases with

increasing radius. As we can see from Table 1, the temperature also decreases within

ahttp://pla.esac.esa.int
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large radii, but it does not affect the value of optical depth. Namely, in this case

optical depth depends only on the dust emission flux density.

Table 2. The optical depth for DL07 model.

DL07 β = 2, T = 19.635K

Distance
r (kpc)

Optical depth
τ857

Optical depth
τ545

Optical depth
τ353

40 7.671 × 10−4 1.616 × 10−3 2.629× 10−3

60 6.122 × 10−4 8.345 × 10−4 1.465× 10−3

80 4.166 × 10−4 4.314 × 10−4 1.066× 10−3

100 3.456 × 10−4 1.911 × 10−4 1.508× 10−4

DL07 β = 2, T 6= const

Distance
r (kpc)

Optical depth
τ857

Optical depth
τ545

Optical depth
τ353

40 7.620 × 10−4 1.605 × 10−3 2.612× 10−3

60 6.133 × 10−4 8.366 × 10−4 1.468× 10−3

80 4.187 × 10−4 4.337 × 10−4 1.071× 10−3

100 3.480 × 10−4 1.923 × 10−4 1.517× 10−4

Next, we calculate optical depth using GNILC maps. In this case both spectral

index and temperature change. There is anti-correlation between Td and β reported

by Planck collaboration.16, 17 The spectral index of dust increases with radius, which

means, that dust emission properties depend on the temperature, and the heating

rate of dust depends on the spectral index. The corresponding values of the optical

depth in this case are given in Table 3 and Table 4. As in DL07, in this case also

there is almost no temperature dependency of optical depth. Optical depth is only

determined through spectral index and flux density (derived by GNILC method).

Table 3. The optical depth for GNILC model.

GNILC β = 2, T 6= const

Distance
r[kpc]

Optical depth
τ857

Optical depth
τ545

Optical depth
τ353

40 7.999× 10−4 1.482× 10−3 2.214× 10−3

60 6.421× 10−4 8.630× 10−4 1.208× 10−3

80 4.786× 10−4 3.177× 10−4 4.003× 10−4

100 3.587× 10−4 1.962× 10−4 1.083× 10−4

5. Dark matter distribution profiles for M31

M31 is one of the most studied galaxy in the Local Group. Various authors have

suggested different dark matter distribution profiles for M31 halo. Here, in this

paper we use the Navarro-Frenk-White (NFW),9 Moore10 and Burkert11 models.

The corresponding density and velocity distributions are presented below:
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Table 4. The optical depth for GNILC model.

GNILC β 6= const, T 6= const

Distance
r (kpc)

Optical depth
τ857

Optical depth
τ545

Optical depth
τ353

40 2.100 × 10−2 3.152 × 10−2 3.771× 10−2

60 1.503 × 10−2 1.648 × 10−2 1.862× 10−2

80 1.084 × 10−2 5.778 × 10−3 5.989× 10−3

100 7.850 × 10−3 3.493 × 10−3 1.564× 10−3

ρNFW (r) =
ρc

( r
rc
)
(

1 +
(

r
rc

)

)2
, (3)

V 2
NFW (r) = 4πGρc

r3c
r

[

ln
(

1 +
r

rc

)

−
r
rc

1 + r
rc

]

, (4)

ρMoore(r) =
ρc

(

r
rc

)1.5
[

1 +
(

r
rc

)1.5
] , (5)

V 2
Moore(r) =

8

3
πGρc

r3c
r
ln
[

1 +
( r

rc

)1.5
]

, (6)

ρBurkert(r) =
ρc

(

1 + r
rc

)[

1 +
(

r
rc

)2
] , (7)

V 2
Burkert(r) = 2πGρc

r3c
r

{[

ln
(

1 +
r

rc

)

√

1 +
( r

rc

)2
]

− arctan(
r

rc
)
}

, (8)

where rc =
rvir
r

and ρc are characteristic radius and density. The virial radius rvir is

defined as the radius at which the mean density is equal to the overdensity constant

( ∆vir ) multiplied by the critical density of the universe

Corresponding virial mass is defined as

Mvir =
4π

3
∆virρcritR

3
vir. (9)

Here ρc and rc are free parameters, fixed by fitting procedure. In Table 5 the cor-

responding fitting values for these parameters are suggested by.14

Table 5. Best fit values of the DM profiles of.14

Profile ρc(M⊙(pc)−3) rc(kpc) Mvir(1011M⊙) Rvir(kpc)

NFW 1.74 ∗ 10−2 12.5 6.93 146.5
Moore 2.05 ∗ 10−3 25.0 7.38 149.6
Burkert 5.72 ∗ 10−2 6.86 5.16 132.8
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On the other hand, we calculate the M31 halo rotational velocities using the

Doppler effect induced temperature asymmetry formula for optically thin halo28

|∆T |

T
=

2vsini

c
τ. (10)

Here the galaxy inclination angle is i = 770 and τ is the optical depth, which

depends on the dust parameters and frequencies. T is the dust temperature, which

changes at large galactocentric distances (see Table 1), and finally |∆T | is the CMB

temperature asymmetry in µKb.

Table 6. CMB asymmetry data by Planck.6

Distance
r (kpc)

ν = 857GHz
∆T
T

(µK)(10−2)
ν = 545GHz
∆T
T

(µK)
ν = 353GHz
∆T
T

(µK)

40 4.68 0.378 6.11
60 5.0 0.378 6.09
80 3.51 0.277 3.27
100 2.12 0.176 0.79

The values of temperature asymmetry are given in Table 6. Corresponding ro-

tational velocities obtaining from Eq.(10) are given in the following Tables 7 and

8.

Even though we know that the dust contribution is highest in 857 GHz fre-

quency band, we also calculate the velocities for 545 and 353 GHz bands for two

different models (DL07 and GNILC). Calculations are performed for constant and

non-constant temperature and spectral indexes.

From Tables 7 and 8 one can clearly see, that for DL07 model neither of two

different scenarios shows any significant difference, as opposed to GNILC model.

For all the models and scenarios we get relatively small values for velocities for 857

GHz, which implies slow or no rotation of galactic dust component.

However, it is possible to roughly estimate the dust velocity in different way.

One can assume that the dust component has a Keplerian motion and that gravity

and centrifugal force are in equilibrium, i.e. the orbital velocity is given by

V 2(r) =
GM

r
, (11)

where M is the virial mass.

There are different estimates for dust mass in M31. For example, according to31

the mass is Mdust = 3.8× 107M⊙ and in32 Mdust = 1.3× 107M⊙ values are given

for dust within 18kpc from center of the M31.

However, for the lower limit of Mdust = 1.1× 107M⊙ is derived33 with a best-fit

model value of Mdust = 7.6×107M⊙, in agreement with expectations from CO and

bActually, the Planck maps for 857 GHz and 545 GHz frequencies are given in MJy/sr units, which
we have converted to µK via Planck High Frequency Instrument (HFI) unit conversion and colour
correction coefficients.29
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HI measurements. Here we adopt the values given by32 and we obtain velocities in

the range of 600-1200 km/s. The derived velocities strongly depend on the frequency

bands, the highest values are obtained at 353 GHz, significantly higher than of 857

GHz and 545 GHZ bands.

Table 7. M31 halo rotational velocities according to DL07 model.

DL07 β = const T=const

Distance
r (kpc)

ν = 857GHz

Vrot(km/s)
ν = 545GHz

Vrot(km/s)
ν = 353GHz

Vrot(km/s)

40 9.45 36.21 359.41
60 12.6 70.08 643.30
80 13.02 99.38 474.15
100 9.47 142.41 640.54

DL07 β = const T 6= const

Distance
r (kpc)

ν = 857GHz

Vrot(km/s)
ν = 545GHz

Vrot(km/s)
ν = 353GHz

Vrot(km/s)

40 9.43 36.27 357.05
60 12.61 70.05 644.78
80 13.0 99.52 479.12
100 9.51 142.35 635.2

Table 8. M31 halo rotational velocities according to GNILC model.

GNILC β 6= const, T 6= const

Distance
r (kpc)

ν = 857GHz

Vrot(km/s)
ν = 545GHz

Vrot(km/s)
ν = 353GHz

Vrot(km/s)

40 0.34 1.85 25.06
60 0.51 3.55 50.63
80 0.50 7.41 84.71
100 0.41 7.79 78.55

GNILC β = 2, T = const

Distance
r (kpc)

ν = 857GHz

Vrot(km/s)
ν = 545GHz

Vrot(km/s)
ν = 353GHz)
Vrot(km/s)

40 8.97 38.74 427.08
60 12.0 67.66 563.87
80 11.36 134.89 511.65
100 9.22 140.21 536.14

6. Conclusions

Whence various details of the rotation of disks of spiral galaxies are well studied, the

structure and the rotation of galactic dark halos still remain far less established.

Here we attempted to study the halo dynamics using M31 galaxy dust emission

data vs the microwave data obtained by Planck; the microwave data can trace dark

matter distribution at larger scales, e.g.34 We derived the velocity values for the

rotation of the dust component using two different models, DL07 and GNLIC. For
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857 GHz frequency band we get relatively small velocity values for both models,

while for 545 GHz we obtained up to 145 km/s and it is clear that the change of Td

does not affect the velocity values. It is worth to stress the relatively large values

for 343 GHz, up to 650 km/s, which is consistent with our estimate of 600-1200

km/s. The dust emission flux densities which we have calculated from CMB maps

have lower values at 545 GHz and 353 GHz bands. Since we can express the dust

masses through the observed flux densities and since the flux density at 857 GHz

is significantly higher, the major part of the dust emission comes at this band. At

this band the majority of dust velocities have low values, i.e. implying rather weak

rotation.

The dust component alone certainly cannot entirely cover the entire radiation

emission mechanisms in the galactic halos, however the accurate information on the

dust dynamics can help to fill the gap between theoretical and measured velocity

curves, including those obtained from the Planck microwave temperature maps.
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