GNedULh MESU4UL <UUULUUNUL

Uhtuwujwu UppwYy Swghyp

Mnpwuwn qguwhwwund qunuywu dhohth hwdwp hwajwpybhnyeyjwu wmphpnypend

U.01.05 «Cwywuwywunipyniuttiph wbunipyniu b dwpbdwnhlwywu

yhbwywagppnip)niu» dwutwghwnigjwdp dhahljwdwpbidwnhliulywu
ghwnnipniuubph pEYUwdNth ghnwlwu wunhtwuph hwjgdwt wnbuwlununiejwu

usauuahbr

bpluwt - 2020

YEREVAN STATE UNIVERSITY

Arshak Minasyan

Robust Estimation of Gaussian Mean within the Domain of Computational Tractability

SYNOPSIS

of dissertation for the degree of candidate of physical and mathematical sciences specializing
in A.01.05 - ”Probability theory and mathematical statistics”

Yerevan - 2020



Uwnbuwfununypjwu pidwu hwuwmwwnyb| £ Gplwuh ybnwlwu hwdwuwpwuntd:

SYhurnwlywu nbywdwn' $hg.-dwpe. ghun. nnluinp 4.4, Ohwtjwu

Muwsownnuwlwu punnhdwfunuutip' $ha.-dwp. ghwn. nnlwnp ML Upwdjwu
$hqg.-dwpe. ghwn. pElYuwdnt L. Lntuhup

Unwowwwn Yugdwybpwnipnt' << GUU hunpdwinhyuwiph L

wynndwwnwgdwt wpnptdubph huunhwunnun

Muwownwwunigyniup Yuywuwint £ 2020p. unjtidptiph 17-hu, d. 15°°-hu 6M<-nwd gnpdnn
PNY-h 050 dwutuwghwnwywu funphpnh thunnu hbnlyw) hwugbng' 0025, tplw, U.
Uwuntyjwu 1:

Uwnbuwlununipjwup Ywnpbih £ dwunpwuw) 6M<-h gpunwpwuncd:
Utindwaghpt wnwpywsd £ 2020 hnyunbdptph 6-hu:

UwutwghwnwYwu funphpnp o
ghnwlwu pwpuininup' ¥h7~/ S. L. <wpnieyntujwt

Dissertation topic was approved at the Yerevan State University.

Supervisor: Doctor of phys-math sciences V.K. Ohanyan
Official opponents: Doctor of phys-math sciences R.H. Aramyan
Candidate of phys-math sciences K. Lounici
Leading organization: Institute for informatics and automation problems of NAS RA

Defense of the thesis will be held at the meeting of the specialized council 050 of SCC
(Supreme Certifying Committee) of Armenia at Yerevan State University on November 17,
2020 at 15°° (0025, Yerevan, A. Manoogian str. 1).

You can get acquainted with the thesis in the library of the YSU.
Synopsis was sent on October 6, 2020.

Scientific secretary of specialized council, T.N. Harutyunyan



General characteristics of the work

Relevance of the theme.

Robustness-to-outliers is a fundamental problem in statistics, which aims at designing statis-
tical procedures that remain stable in presence of outliers. A significant breakthrough in the
field of robust statistics was done by Peter J. Huber with seminal papers ([10, [I1]). History and
experience of collecting datasets shows that the outliers were mistakes in data collection, being
it incorrect input by a human or machine or including observations from a different popu-
lation than that of interest. Having robust-to-outliers methods is becoming more and more
critical, since automatically collected datasets are often heterogeneous. Recent advances in
data acquisition and computational power provoked a revival of interest in robust estimation
and learning, with a focus on finite sample results and computationally tractable procedures.
This was in contrast with more traditional studies analyzing asymptotic properties of statistical
methods.

Loss functions that lead to robust M-estimators [[3] are the most popular ones across
the field of statistics and machine learning, since they share a number of useful and desirable
properties for proposed estimators. It is well known that the minimization of the ¢, loss function
leads to the median. In a more general way, Lipschitz loss function minimization leads to more
stable (to outliers) methods. Examples of such loss function are Huber’s loss function [1Q],
quantile losses, above mentioned ¢; loss and many others.

To the best of our knowledge, the form /p/n + ¢ of the minimax risk in the Gaussian
mean estimation problem has been first obtained by [2]. They proved that this rate holds
with high probability for the Tukey median, which is known to be computationally intractable
in the high-dimensional setting. The first nearly-rate-optimal and computationally tractable
estimators have been proposed in [12] and [6]. The methods analyzed in these papers are
different, but they share the same idea: If for a subsample of points the empirical covariance
matrix is sufficiently close to the theoretical one, then the arithmetic mean of this subsample is
a good estimator of the theoretical mean.

Further improvements in running times—up to obtaining a linear in np computational
complexity in the case of a constant e—are presented in [3]. Some lower bounds suggesting
that the log-factor in the term £,/log(1/¢) cannot be removed from the rate of computation-
ally tractable estimators are established in [J]. In a slightly weaker model of corruption, [7]
propose an iterative filtering algorithm that achieves the optimal rate ¢ without the extra fac-
tor /log(1/¢). On a related note [4] shows that in a weaker contamination model termed as
parametric contamination, the carefully trimmed mean can achieve a better rate than that of
the coordinatewise/geometric median.

An overview of the recent advances on robust estimation with a focus on computational
aspects can be found in [8]. All these results are proved to hold on an event with a prescribed
probability, see [[l] for a relation between results in expectation and those with high probability,
as well as for the definitions of various types of contamination.

An appealing feature of the risk bounds that hold with high probability is that they allow
us to apply Lepski’s method [I3] for obtaining an adaptive estimator with respect to . The
obtained adaptive estimator enjoys all the five properties enumerated above except the asymp-
totic efficiency, since the adaptation results in a inflation of the risk bound by a factor 3, see
[A] for more details.



The aim of the thesis:

1.

Establish an information theoretic bound for the ¢ loss of coordinate-wise median i =
Med(Y1,Y5,...,Y,) of observations Y1, ..., Y, both in probability and in expectation.

. Construct an estimator /! that is translation and orthogonal transformation invariant.
. Establish the breakdown point of the estimator 'R

. Prove that /)% is nearly minimax rate optimal with the worst-case risk of order

12llop” (v/r=/n + ey/log(1/e)),

%) heing the effective rank of matrix .

with rg = =Tor

. Prove that estimator /iR is asymptotically efficient.

. Construct the robust estimators in the setting of excess-risk setup such that

lim E(figut, N, Pnsen) = 0.
n— 00

. Modify the estimator figur to obtain the minimax rate for excess-risk loss

E(fugn, €) < ,/e% + Ce /p.

. llustrate numerical robustness of Algorithms 1 and 2.

. lllustrate numerical robustness of Projected Iterative Reweighted Least Squares (Pr-IRLS)

optimization method and prove convergence of the algorithm.

The methods of investigation.

In this thesis we apply methods and techniques obtained on the basis of high-dimensional
statistics, gaussian processes, probabilistic inequalities, minimax theory and related topics.

Scientific innovation.

All results are new and are published in local and international conferences and journals.

Practical and theoretical value.

The results of the work both have theoretical and practical character. The theoretical results
are devoted the minimax theory yielding nearly minimax optimal estimators. Presented various
estimators are shown (numerically) to be robust to the existence of outliers.



Approbation of the results.

The presented results were presented in the scientific seminar at Yerevan State University.
Some parts of obtained results were presented in local and international conferences.

Publications.

The main results of this thesis have been published in 3 scientific articles in journals, 2 abstracts
in conferences and 1 arXiv paper. The list of the articles is given at the end of the Synopsis.

The structure and the volume of the thesis.

The thesis consists of introduction, 3 chapters of main results followed by conclusion and
discussion, a list of references and 5 appendices. The number of references is 104. The
volume of the thesis is 129 pages. The thesis contains 15 figures and 1 table.

The main results of the thesis

Chapter 1.

The aim of the first chapter is to introduce to the problem of robust estimation both from formal
and from intuitive point of views. We present the two main robust estimators: coordinate-
wise median and trimmed/truncated mean. Theorems concerning their minimax rates were
presented.

Then, the challenges in high-dimensions of robust estimation were briefly discussed and
the following overview of the results available in literature was given.

H Dimensionality ‘ Error guarantee ‘ Efficiency H
In low dimensions
Coordinate-wise median (Ch. 1) O(e) Yes
Truncated mean (Ch. 1) O(ey/log1/e) Yes
In dimension p > 1
Coordinate-wise median (Ch. 2) O(e\/p) Yes
Truncated mean O(ey/p) Yes
Tournament (Ch. 6 [§]) O(e) No
Geometric median ([14], Ch. 2) O(e/p) Yes
Tukey’s median ([16]) O(e) No
Iterative Soft Thresholding ([4]) O(ep'/) Yes
[6] O(ey/log1/e) Yes
Iterative reweighted mean (Ch. 3) | O(=y/log1/z) Yes

Excess-risk setting
Group Hard Thresholding (Ch. 3) O(@) Yes




The main aim of this thesis is to construct robust estimators with optimal minimax rates,
low computational cost and high breakdown point. In the end of the Chapter we also discuss
the directions of robust estimation beyond mean estimation.

Chapter 2.

Chapter 2 introduces 3 contamination models that will be used further in the thesis and the
robust mean estimators under these contamination models in high-dimensions.

§1. Contamination models.

Huber’s contamination model. Let X;,..., X, g (1 —¢e)Py + £Q, where P, is the
target distribution and @ is an arbitrary distribution of outliers. Notice that under this model
assumption we assume that the outliers are all coming from the same distribution. In other
words, this assumption means that the presence of outliers is caused by a single reason.

An equivalent formulation is the following: suppose that there exist Z1, ..., Z, S Bern(e)
such that {(X;, Z;)}._, arei.i.d. with

P(X:€A| Zi=0)=Pu(A), P(X:icA|Z =1)=Q(A).

. . def "
Then, the number of outliers o is defined as follows: 0 = > | Z;. Huber’s contamination
model can be summarizes as follows:

MHc(e):{[(l—s)PM+sQ]®" : ueM,QeP}, M

where P is an arbitrary family of probability distributions.

Parameter contamination model. Fixo € {1,...,n} and let X; He- P, so that for some
fixed set O C {1,...,n} with |O] < o we have u; = p for all ¢ € O°. Then, we can write

Mpc(o) = {P,L1 Q- QP,, : p; €M, IO C [n]s.t. |O] <oand p; # pj;, Vi, j€ (’)}.

In other words, the observations X1, ..., X, follow the following rule:
Xi=p+6;+&, Vie[n], 3)

where 6; = 0 for all : € O° and ¢; g N(0,X). Notice that under this contamination model

assumptions the outliers are still Gaussian itself with the same covariance structure as inliers.

The only difference is that they might be shifted in any (one or more) of p directions.
Adversarial contamination model. Fix o € {1,...,n}. Let all but o vectors from sample

{Xi}?zl are from the distribution P, and are independent. Hence X; e Py for a set of
inliers I with |I| > n — o. The rest of observation may be arbitrarily selected vectors. Hence,



Mac(o) = {a(PEE’”“’ QPR - QP,) : we M,o0 €S,
permutation group and Pi, ..., P, are arbitrary}.

Definition. We say that the distribution P,, of data X1, ..., X, is Gaussian with adversarial
contamination, denoted by P,, € GAC(p*, 3, ) with e € (0,1/2) and X = 0, if there is a set of
n independent and identically distributed random vectors Y7, ...,Y, drawn from N,(p*, X)
satisfying

The chart below indicates how these contamination models are connected between each
other:

Mac

Mpc MHC

§2. Robust mean estimation in high-dimensions.
Coordinate-wise median. The variational formulation of coordinate-wise median is the
following

~CM

fi" € arg min ; IY: — w1 (5)



Theorem 1. For any a < 1/2 there exist two constants ¢, and co depending only on a such
that if § € [2pe™"/°1 1], then

ot inf p(mgw”ggw(s T+ T<>'g</>))

e<aP, €GAC(Z,e) 2n
Moreover,
. * 1 4/Tr(2) . (se
sup  E[|as - p 3] < e Tr(E)(s+—) +#e /(8e1)
P, €GAC(Z,¢) vn 1—2a

holds for any ¢ < a.

Tukey’s median. For any n € R? and distribution P on R?, the Tukey’s depth of n with
respect to P is defined as follows

D(n,P) = ue@}f_l P(u' X <u'n), where X ~P. (6)

The empirical counterpart of (E) for i.i.d. observations {X;}_; is defined as follows:

n

. 1
D(n,{Xi}iz1) = uglslpnfl n ZH{UTXz‘ < UTW},
i=1

where P, = L 3" | §x, being the empirical distribution. Then, Tukey’s median is defined
to be the deepest point with respect to given observations { X;}i", hence

~TM __ an
p = arg max D(n, { X }ima)- (7)

In case of multiple maxima in (ﬂ) we take any vector that has the deepest Tukey depth D.

Theorem 2 (Theorem 2.1 from [2]). Assume ¢ < 1/5 and there exists universal constants
C,C1 > 0 such that for any 6 € (0,0.5) satisfying C1 (p/n + logé~"/n) < 1, Tukey’s median
™ has the following convergence rate

-1
8™ -l < 0 (Lt 4 280
n n
with probability of at least 1 — 26 uniformly over p and Q.

Chapter 3.

§1. All inclusive robust estimator. In this part we construct an estimator that has many good
properties for robust estimation. Below we list these properties.

1. The estimator is computationally tractable.
2. The estimator is translation and orthogonal transformation invariant.

3. The breakdown point ¢}, and the nearly-minimax-rate-breakdown point e/ of the estima-
tor satisfy, respectively ¢, = 0.5 and &7 > (5 — v/5)/10 = 0.28.



4. The estimator is nearly minimax rate optimal, in the sense that its worst-case risk is of
order ||Slop” (v/=/n + £ /log(1/2)).

5. In the setting ¢ = £,, — 0 so that €* log(1/¢) = o(rs/n) when n — oo, the estimator is
asymptotically efficient.

The main theorem is formulated as follows

Theorem 3. There is a universal constant C > 0 such that for any n,p > 1 and for every
e < (5 —+/5)/10, we have

Ol op”
su su EY2[||aR — w3 < P Vrs/n+ey/log(1/¢)).
“*EF’RP PneGAC(E*,E,e) i ll2] < o oD (Vrs/ \/log(1/¢))

If, in addition, p > 2 and n > p V 10, then

R 10]2l0p°
su su EV?[| @R — p3] < i Vp/n+ey/log(1/e)).
u*an)w PneGAC(E*,):,s) [ 2 1—2e—+/e(1—¢) ( g(1/2))

§2. Excess risk setup.

Let i = Med(Y1,...,Yi-1,Yit1,...,Y,) = Med()_,;) be the sample median of the sam-
ple IV excluding the observation Y; for each i € {1,...,n}. The estimator 4" is then defined
by the following simple procedure. Put

0; =HT,\(Yi — ') = (Vi — @)L([Yi — a'l|l2 > N) (8)
and take
T _ LN~y gy _é
AT = =S (Yi = 0) = La(Y - ©) 9)

as the final estimator.
Even in the more weaken setup when ' = i = Med (Y1, Ys, . .., Y,,) the following theorem
takes place for the excess-risk loss

5(ﬁGHT7n7p”l76n) = sup R[ﬂ?’JW G)] - \/g

HERP;||®]|g,2<en
Theorem 4. For fight and \? = p+ 8,/ploge—1 + 16loge™" we have

lim E(figut, ny Pryen) =0

n—r00

provided that e,py/* log"/? e, = o(1) and p, = O(n) asn — cc.

For the minimax rate the estimator (E) enjoys the following bound:



Theorem 5. Lete € (0,a) witha < 1/2 and Y be the sample generated according to param-

eter contamination model. For the estimator " and

A= 4/2log(2/e8) + VTr(Z) + c31/Tr(Z <2+%),

where c; is a constant dependent only on a, then we have the following bound for the excess
risk

E(pT ) < gTrng {\/Tr ) +4/log(1/¢) + (||2|\}/2\/[Iog(l/a)Tr(E)]l/‘l)}

for some universal constant C'.

Chapter 4.

Chapter 4 addresses the problem of robust estimation from the optimizational point of view.
§1. Iteratively reweighted mean estimator.

Algorithm 1 Iteratively reweighted mean estimator

Input: data X1, ..., X, € RP, contamination rate £ and X
Output: parameter estimate ﬂ','f
Initialize: compute p© as a minimizer of Y1 | || X; — pl|2

log(4rs-)—2log(e(1—2¢
Set K =0V {2Ioggl—%zs)—logg(sjlog(lz)e)—"
Fork=1:K
Fori=1:n
SetM; = (X; — pF =) (X; —ph~ )T
EndFor
Compute current weights:

n
w € arg min )\max(ZwiMi — 2) V0

(n—ne)[lwlleo <1 i=1
Update the estimator: gf = 37 w; X;.
EndFor
Return X

§2. Minimizing Huber function. From the intuitive point of view the algorithm from [4]
approximates pi* defined as follows

) n Y _ /2
=1

g

for appropriately chosen tuning parameter 6 > 0. The objective function from the optimization
problem (E) is unfortunately not convex with respect to p.

§3. Projected IRLS. The algorithm of IRLS was first introduced in [I7]. A modification of
this algorithm was studied and an illustration of one Pr-IRLS algorithm step from z(*) to 2(*+1)
given that =*) is outside of the ball around Y; and its IRLS projection is inside.

10



Algorithm 2 IRLS for mean estimation

Given: data Y3,...,Y, € R? and 6.
Initialize: p® = 1 S°" v,

i=1

k<0

while stopping criterion is False, do
k< k+1
te = [(lo~* (¥; — n= D)3 —p)Y2 fori = 1,...,n]
O ={i:t},>d}.

Tico Yio /8 4+ cpe Yi/o
Tico 8/t +l0°|/o
Check stopping criterion.
end while
N+ Fkand g+ p
Return: 4.

Update: p*) =

(N)

r-IRLS)z*) =: g1

1



Theorem 6. For all but countable set of initial values =* and for all i € [N] if at each
iteration k > 1 z¥) #Y; then the above defined sequence {x*)},>1 converges to x*.

Chapter 5.

Chapter 5 concludes the main results of the thesis and contains discussion on the relevance of
obtained results with possible further research directions.
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Upowly Swghyph Uhuwujwt

Mnpwuwn quwhwwnnd qunwywu dhohuh hwdwp hwojwpybihnipjuu

wmhpnypnd

Uwnbuwlununipiniuntd unwgyby Gu hnlyw| wpryntupubipp.

1.

Unwgyt bu  Yi,...,Y, wjjuiubph Ynnpnhuwwnwht - Yphunpnh 4 =
Med(Y1,Y2,...,Y,) £2 Unpunph Iniuyghwih hwdwp ybGppu vwhdwuubp Jbéd
hwjwuwlwnigjwdp b dwebdwnhlulwl uwywunwiny:

. Ywnnigywsd £ wjuwhup quwhwinwywu &R, npp hudwphwtn b otindw W oppngntiw)

wnpwuudnpdwghwubph tywwndwdp:

. Cwoyqws k4R quuwhwinwlwuh dwiunndwt uwhdwup:

~IR

. Uywgnigqwé t, np G quwhwunwlwuh Jdhupdwpu ufuwjwupp owwnhdwy £

(Inqupheuhly $wlinnph Gaunipjwdp), wjuhtpt nhuyp Junwgnyl nbupnud niup

hGulyw| Yupgp
IZleg” (Vrs/n +2y/log(1/¢)),
npntin rs = [gﬁ:)-n > dwwnphgh Eptlinhy nwulu k:

. Uwwgnigyws £, np 4R quwhwwnwywup wuhdwwnninhly Ebtyunpy E:
. thuowpydwd £ nnpwun quwhwnnwdp  hwybigw) nhubh Ynpunh  pniulghwyh

nbwpnd, b Yunnigwéd t peur quwhwwnwlwu, npph hwdwp 6hon £ hGnlyw
wpryntupp

m g(llGHTv n7pn75n) =0.
n—oo

. Auwihntuyby | fignr quwhwwnwlwup, wjuybu np unwgytip £ hbnlyw| dhuhdwpu

uuuwiuitipp hu g ahubh Ynputnh $nilghuh tugpnad
E(fgut,e) < 1/6% + CEQ\/};.

. Cwoqwnybihnpbu gnyg £ wpws, np wignppped 1 W 2-p odwndwd Gu Ybipnugjuy

nnpwuwn hwwnynypniuubpny:

. Cwpdwnpybhnpbu gnyg £ wpdwsd, np wpnyunwd hnbpwnpy  YEpwlyondusd

thnppwgnyu  pwnwynwhpubph  dbennp  unyuwbu  odwnwd L nnpwuwnn
hwwnynigyniuubipny b wwwgnigywsd E wignphpuh gnigwdhwnnieiniup:
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PE3IOME

Mwunacan Apak larnkosuy

PobacTHoe oueHuBaHMe rayccoBCKOro cpeaHero B obnactu
BblYMCUTENbHOII acpcpeKTMBHOCTH

B AnccepTauun nonyvyeHbl cnepyrolimne pesynbratbl:

1.

MonyyeHbl BepxHUe oueHkU AN ¢z YHKLMM MOTepb MOKOOPAWHATHOW MeguaHbl i =
Med(Y1,Y2,...,Y,) c 60onbLUO BEPOATHOCTBIO M MO MaTeMaTUYeCKOMY OMUAAHMUIO.

IR

. nOCTpOGHa OLEHKa ﬂn, KOTOpaA WHBapuMaHTHa NO OTHOLWEHWKO K cAoBuram wu

OPTOroHa/bHbIM TPaHCGOPMaLMAM.

. MocuymutaHa To4Ka HeBO3BpaTa A1A OLEHKU [l,ls

. ,D,OKa3aHO, 4YTO OUEHKa [.Al,lf 06nap,aeT no4yTn onTuManbHbIM MMHMMAKCHbIM NOPAAKOM, B

XygLem cny4ae chyHKLMA NoTepb UMEeT NOpALOK

1= lleg” (V/rs/n + 4/log(1/e)),
Tr(X)

rAe M's = [5i; 3tpcheKTUBHBIN paHK MaTpuLbl 3.

. ,D,OKa3aHO, YTO OLEHKa ﬂlf ACUMNTOTUYECKHN SdJ(beKTMBHa.

. W3yueHbl pobacTHble OLeHKN B cyqae U3BbITOYHOrO pUCKa U MOCTPOEHA OLLEHKA fiGHT

TaKkaA, 4To

lim &(fgnr, nypnyen) = 0.
n—oo

. MogndrumposaHa oueHKa figrT ¥ MOMYyY€eH KCHbII NOPALKOK B Clyyae n3bbITOYHOTO pUcKa

E(jigur, €) < ,/g% +Ce/p.

. WUnnioctpuposara pobactHoctb Anroputmos 1 1 2.

WnntocTpupoBaHa pobacTHOCTb NPOEKTMPOBAHHOIO UTEPATUBHOIO B3BELLIEHHOTO METOAA
HaMMeHbLLVX KBaApaToB U foKasaHa Teopema O CXOAMMOCTU MeToAa.
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